首页> 外文OA文献 >Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in-situ and satellite observations
【2h】

Model simulations of the chemical and aerosol microphysical evolution of the Sarychev Peak 2009 eruption cloud compared to in-situ and satellite observations

机译:与现场和卫星观测相比,Sarychev Peak 2009喷发云化学和气溶胶微物理演化的模型模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Volcanic eruptions impact climate through the injection of sulfur dioxide (SO), which is oxidized to form sulfuric acid aerosol particles that can enhance the stratospheric aerosol optical depth (SAOD). Besideslarge-magnitude eruptions, moderate-magnitude eruptions such as Kasatochi in 2008 and Sarychev Peak in 2009 can have a significant impact on stratospheric aerosol and hence climate. However, uncertainties remain in quantifying the atmospheric and climatic impacts of the 2009 Sarychev Peak eruption due to limitations in previous model representations of volcanic aerosol microphysics and particle size, whilst biases have been identified in satellite estimates of post-eruption SAOD. In addition, the 2009 Sarychev Peak eruption co-injectedhydrogen chloride (HCl) alongside SO, whose potential stratospheric chemistry impacts have not been investigated to date. We present a study of the stratospheric SO-particle-HCl processing and impacts following Sarychev Peak eruption, using the CESM1(WACCM)-CARMA sectional aerosol microphysics model (with no a priori assumption on particle size). The Sarychev Peak 2009 eruption injected 0.9 Tg of SO into the upper troposphere and lower stratosphere (UTLS), enhancing the aerosol load in the Northern hemisphere. The post-eruption evolution of the volcanic SO in space and time are well reproduced by the model when compared to IASI (Infrared Atmospheric Sounding Interferometer) satellite data. Co-injection of 27 Gg HCl causes a lengthening of the SO lifetime and a slight delay in the formation of aerosols, and acts to enhance the destruction of stratospheric ozone and mono-nitrogen oxides (NO) compared to the simulation with volcanic SO only. We therefore highlight the need to account for volcanic halogen chemistry when simulating the impact of eruptions such as Sarychev on stratospheric chemistry. The model-simulated evolution of effective radius (), reflects new particle formation followed by particle growth that enhances to reach up to 0.2 µm on zonal average. Comparisons of the model-simulated particle number and size-distributions to balloon-borne in-situ stratospheric observations over Kiruna, Sweden, in August and September 2009, and over Laramie, U.S.A., in June and November 2009 show good agreement and quantitatively confirms the post-eruption particle enhancement. We show that the model-simulated SAOD is consistent with that derived from OSIRIS (Optical Spectrograph and InfraRed Imager System) when both the saturation bias of OSIRIS and the fact that extinction profiles may terminate well above the tropopause are taken into account. Previous modelling studies (involving assumptions on particle size) that reported agreement to (biased) post-eruption estimates of SAOD derived from OSIRIS likely underestimated the climate impact of the 2009 Sarychev Peak eruption.
机译:火山喷发通过注入二氧化硫(SO)来影响气候,二氧化硫被氧化形成硫酸气溶胶颗粒,从而可以提高平流层气溶胶的光学深度(SAOD)。除了大震级爆发外,中等震级爆发(如2008年的Kasatochi和2009年的Sarychev Peak)也可能对平流层气溶胶和气候产生重大影响。但是,由于以前的火山气溶胶微物理模型和粒径模型模型的局限性,在量化2009年Sarychev峰喷发对大气和气候的影响方面仍存在不确定性,而在喷发后SAOD的卫星估算中已发现存在偏差。此外,2009年Sarychev Peak爆发与SO一起共注入了氯化氢(HCl),其潜在的平流层化学影响至今尚未得到研究。我们使用CESM1(WACCM)-CARMA截面气溶胶微观物理模型(对粒径没有先验假设),对平流层SO-颗粒-HCl的处理过程以及Sarychev峰爆发后的影响进行了研究。 2009年Sarychev Peak爆发喷出了0.9 Tg的SO到对流层和平流层下层(UTLS),增加了北半球的气溶胶负荷。与IASI(红外大气探测干涉仪)卫星数据相比,该模型很好地再现了火山SO在空间和时间上的喷发后演变。与仅使用火山SO模拟相比,共同注入27 Gg HCl会延长SO寿命,并略微延迟气溶胶的形成,并起到增强平流层臭氧和一氧化氮(NO)破坏的作用。因此,在模拟诸如Sarychev等喷发对平流层化学的影响时,我们强调需要考虑火山卤素的化学作用。通过模型仿真,有效半径()的变化反映了新粒子的形成以及随后粒子的生长,粒子的平均面积增长到0.2µµm。模型模拟的粒子数量和尺寸分布与2009年8月和9月在瑞典基律纳,2009年6月和11月在美国拉勒米进行的气球传播的平流层观测的比较显示出良好的一致性,并定量地证实了喷发后的粒子增强。我们显示,当同时考虑了OSIRIS的饱和偏差和消光剖面可能终止于对流层顶的事实时,模型仿真的SAOD与从OSIRIS(光学光谱仪和红外成像仪系统)导出的SAOD一致。先前的建模研究(涉及颗粒大小的假设)报告了对来自OSIRIS的SAOD的喷发后估计值(有偏差)的一致估计,可能低估了2009年Sarychev Peak爆发对气候的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号